Cálculo da dimensão em um modelo de gravitação quântica euclidiana

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Santos, Felipe Honorio dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-113939/
Resumo: Este trabalho de mestrado teve o objetivo de calcular a dimensão de um modelo de gravitação quântica euclidiana baseado no formalismo da geometria não comutativa. Este cálculo é uma continuação do artigo [4]. Em [4], observa-se que utilizar uma tripla espectral comuttiva permite generalizar e tratar a geometria usual de maneira puramente algébrica. Do formalismo da Geometria Não Comutativa [2], observa-se que existe uma relação entre uma variedade e uma tripla espectral comutativa. Depois de definida a ação, as variáveis dinâmicas e o observável dimensão desta teoria em termo de tripla espectral, verificou-se que havia um analogia clara com a teoria das Matrizes Aleatórias [6], assim foi possível identificar uma maneira numerica de calcular a dimensão deste problema. O espaço estudado foi um conjunto infinito de pontos, cuja dimensão era uma variável estocástica, ou seja, partimos de um conjunto de pontos arbitrário que poderia ter qualquer dimensão real. Os resultados obtidos mostram que a dimensão do modelo é um número perto de 1. Neste trabalho de mestrado encontramos dois métodos distintos para calcular a dimensão, um baseando-se na definição de dimensão de dimensão oriunda da Geometria Não Comutativa e a outra baseada na lei de Weyl. Dadas estas duas alternativas, o trabalho consistiu em criar, construir, implementar e testar um algoritmo capaz de extrair a dimensão destas duas maneiras através de simulações de Monte Carlo. Este resultado é muito interessante devido as características muito gerais do espaço escolhido, dado que o limite superior da dimensão calculada em [4] foi 2, estávamos esperando qualquer valor no intervalo entre 0 e 2, e o que os resultados sugerem é que a dimensão é uma \"variável termodinâmica\", ou seja, uma distribuição delta com centro em 1