Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Gouveia, João Henrique Antoniazzi de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3150/tde-03092020-131849/
|
Resumo: |
O número de pessoas que utilizam os aviões como meio de transporte aumenta a cada ano, e estima-se que dentro de 17 anos o mercado aéreo deva dobrar. Dessa forma, é necessário aprimorar a distribuição de ar dentro das cabines para fornecer aos passageiros um ambiente seguro, confortável e saudável. O sistema de ar condicionado da maioria das aeronaves comerciais é composto por um sistema principal, que opera pelo princípio de ventilação por mistura, e um sistema de ventilação personalizada. O sistema principal é responsável por fornecer um fluxo contínuo de ar na região da respiração dos ocupantes, composto por uma mistura do ar externo comprimido pelo motor e ar recirculado. Além disso, cada passageiro tem a sua disposição um sistema de ventilação denominado gasper. A maioria dos estudos no sistema de ventilação das cabines focam no escoamento produzido pelo sistema de ventilação principal. Porém, estudos de campo demonstram que 60% dos passageiros utilizam o gasper, e preferem manter a válvula parcialmente aberta ou redirecionar o jato para longe da cabeça, pois a forte corrente de ar causa desconforto. Assim sendo, há uma demanda para caracterizar o escoamento desse dispositivo propiciando futuros aprimoramentos. Este trabalho tem como objetivo estudar experimentalmente o jato do gasper no interior de um modelo real de cabine utilizando a velocimetria por imagem de partículas (PIV). Foram testados quatro casos experimentais, utilizando duas vazões e duas aberturas da válvula gasper. Na técnica utilizada, a velocidade é calculada pelo deslocamento mais provável de um grupo de partículas dividido pelo intervalo entre os quadros. No caso do gaspers, as velocidades observadas variam significativamente no campo, o que dificulta a determinação do melhor intervalo entre as imagens e aumenta o erro. Por isso, foi observado que tempos mais baixos representam melhor o núcleo do jato enquanto o ambiente externo necessita de intervalos mais elevados. Em sequência, foi realizada uma análise das incertezas, e notou-se que aquela relativa à estimativa do deslocamento das partículas é superior ao descrito na literatura. As imagens capturadas demonstram a complexidade do escoamento de ar ao redor do gasper, mas o decaimento da velocidade da linha central do jato em sua região totalmente desenvolvida é similar ao que ocorre em um jato redondo, assim, este estudo propôs equações empíricas que preveem o desenvolvimento do jato de acordo com abertura da válvula. Os resultados indicam que não só a velocidade é influenciada pelo sistema de ventilação por mistura como também a trajetória do jato. Além disso, a reconstrução do volume de medição mostra que a seção transversal do jato se aproxima de uma forma circular, assim, o cálculo da vazão de ar local indica que o ar entregue na zona de respiração do passageiro é majoritariamente fornecido pelo sistema de ventilação por mistura. Desta forma, o atual sistema demanda melhorias visto que o passageiro está sujeito a um jato de ar de alta velocidade e grande arraste de ar do ambiente. |