Visualização, kernels e subespaços: um estudo prático

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Barbosa, Adriano Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032017-112630/
Resumo: Dados de alta dimensão são tipicamente tratados como pertencentes a um único subespaço do espaço onde estão imersos. Entretanto, dados utilizados em aplicações reais estão usualmente distribuídos entre subespaços independentes e com dimensões distintas. Um objeto de estudo surge a partir dessa afirmação: como essa distribuição em subespaços independentes pode auxiliar tarefas de visualização? Por outro lado, se o dado parece estar embaralhado nesse espaço de alta dimensão, como visualizar seus padrões e realizar tarefas como classificação? Podemos, por exemplo, mapear esse dado num outro espaço utilizando uma função capaz de o desembaralhar, de modo que os padrões intrínsecos fiquem mais claros e, assim, facilitando nossa tarefa de visualização ou classificação. Essa Tese apresenta dois estudos que abordam ambos os problemas. Para o primeiro, utilizamos técnicas de subspace clustering para definir, quando existente, a estrutura de subespaços do dado e estudamos como essa informação pode auxiliar em visualizações utilizando projeções multidimensionais. Para o segundo problema, métodos de kernel, bastante conhecidos na literatura, são as ferramentas a nos auxiliar. Utilizamos a medida de similaridade do kernel para desenvolver uma nova técnica de projeção multidimensional capaz de lidar com dados imersos no espaço de características induzido implicitamente pelo kernel.