Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Ozaki, Sérgio Tonzar Ristori
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3140/tde-08122011-095611/
Resumo: A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior.