Half-Isomorfismos de loops automórficos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Anjos, Giliard Souza dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-03052018-221550/
Resumo: Loops automórficos, ou A-loops, são loops nos quais todas as aplicações internas são automorfismos. Esta variedade de loops inclui grupos e loops de Moufang comutativos. Loops automórficos diedrais formam uma classe de A-loops construda a partir da duplicação de grupos abelianos finitos, generalizando a construção do grupo diedral. Outra classe de A-loops é a dos loops automórficos de Lie, construda a partir de anéis de Lie, definindo-se uma nova operação entre seus elementos. Um half-isomorfismo é uma bijeção f entre loops L e L\' onde, para quaisquer x e y pertencentes a L, temos que f(xy) pertence ao conjunto {f(x)f(y),f(y)f(x)}. Dizemos que o half-isomorfismo f é não trivial quando f não é um isomorfismo e nem um anti-isomorfismo. Nesta tese descrevemos propriedades de half-isomorfismos de loops, classificamos os half-isomorfismos entre loops automórficos diedrais e obtivemos o grupo de half-automorfismos nesta classe. Para os loops automórficos de Lie de ordem mpar, mostramos que todo half-automorfismo é trivial.