Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Pinho, Roberto Dantas de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092009-123807/
|
Resumo: |
Representações visuais têm sido adotadas na exploração de conjuntos de documentos, auxiliando a extração de conhecimento sem que seja necessária a análise individual de milhares de textos. Mapas de documentos, em particular, apresentam documentos individualmente representados espalhados em um espaço visual, refletindo suas relações de similaridade ou conexões. A construção destes mapas de documentos inclui, entre outras tarefas, o posicionamento dos textos e a identificação automática de áreas temáticas. Um desafio é a visualização de conjuntos dinâmicos de documentos. Na visualização de informação, é comum que alterações no conjunto de dados tenham um forte impacto na organização do espaço visual, dificultando a manutenção, por parte do usuário, de um mapa mental que o auxilie na interpretação dos dados apresentados e no acompanhamento das mudanças sofridas pelo conjunto de dados. Esta tese introduz um algoritmo para a construção dinâmica de mapas de documentos, capaz de manter uma disposição coerente à medida que elementos são adicionados ou removidos. O processo, inerentemente incremental e de baixa complexidade, utiliza um espaço bidimensional dividido em células, análogo a um tabuleiro de xadrez. Resultados consistentes foram alcançados em comparação com técnicas não incrementais de projeção de dados multidimensionais, tendo sido a técnica aplicada também em outros domínios, além de conjuntos de documentos. A visualização resultante não está sujeita a problemas de oclusão. A identificação de áreas temáticas é alcançada com técnicas de extração de regras de associação representativas para a identificação automática de tópicos. A combinação da extração de tópicos com a projeção incremental de dados em um processo integrado de mineração visual de textos compõe um espaço visual em que tópicos e áreas de interesse são destacados e atualizados à medida que o conjunto de dados é modificado |