Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Bastos, Antonio Josefran de Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092017-192427/
|
Resumo: |
O estudo do comportamento assintótico de densidades de algumas subestruturas é uma das principais áreas de estudos em combinatória. Na Teoria das Permutações, fixadas permutações ?1 e ?2 e um inteiro n > 0, estamos interessados em estudar o comportamento das densidades de ?1 e ?2 na família de permutações de tamanho n. Assim, existem duas direções naturais que podemos seguir. Na primeira direção, estamos interessados em achar a permutação de tamanho n que maximiza a densidade das permutações ?1 e ?2 simultaneamente. Para n suficientemente grande, explicitamos a densidade máxima que uma família de permutações podem assumir dentre todas as permutações de tamanho n. Na segunda direção, estamos interessados em achar a permutação de tamanho n que minimiza a densidade de ?1 e ?2 simultaneamente. Quando ?1 é a permutação identidade com k elementos e ?2 é a permutação reversa com l elementos, Myers conjecturou que o mínimo é atingido quando tomamos o mínimo dentre as permutações que não possuem a ocorrência de ?1 ou ?2. Mostramos que se restringirmos o espaço de busca somente ao conjunto de permutações em camadas, então a Conjectura de Myers é verdadeira. Por outro lado, na Teoria dos Grafos, o problema de encontrar um circuito Hamiltoniano é um problema NP-completo clássico e está entre os 21 problemas Karp. Dessa forma, uma abordagem comum na literatura para atacar esse problema é encontrar condições que um grafo deve satisfazer e que garantem a existência de um circuito Hamiltoniano em tal grafo. O célebre resultado de Dirac afirma que se um grafo G de ordem n possui grau mínimo pelo menos n/2, então G possui um circuito Hamiltoniano. Seguindo a linha de Dirac, mostramos que, dados inteiros 1 6 l 6 k/2 e ? > 0 existe um inteiro n0 > 0 tal que, se um hipergrafo k-uniforme H de ordem n satisfaz ?k-2(H) > ((4(k - l) - 1)/(4(k - l)2) + ?) (n 2), então H possui um l-circuito Hamiltoniano. |