Mecanismos biofísicos que afetam a resistência de entrada e a constante de tempo da membrana de neurônios: estudos experimentais e de simulação computacional

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Ceballos, Cesar Augusto Celis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-16042018-095925/
Resumo: As correntes subliminares determinam propriedades da membrana neuronal, tais como a resistência de entrada (Rin) e a constante de tempo (tm). Nesta tese, estudamos mecanismos pelos quais duas correntes subliminares (corrente ativada por hiperpolarização, Ih, e corrente de sódio persistente, INaP) determinam Rin e tm em dois tipos de neurônio: neurônio fusiforme do núcleo coclear dorsal e célula piramidal da região CA1 do hipocampo. A tese está dividida em três partes: a primeira estuda como a Ih atua concomitantemente com a corrente de potássio retificadora de entrada (IKIR) para manter Rin estacionária entre neurônios fusiformes com heterogeneidade de disparo (silenciosos, sem disparos espontâneos, e ativos, com disparos espontâneos regulares). Na segunda parte, usa-se uma combinação de modelagem computacional com a técnica experimental de dynamic-clamp em neurônios piramidais de fatias hipocampais para mostrar que a criação de uma região de inclinação negativa na curva I/V (condutância de inclinação negativa) pela ativação rápida da INaP é responsável pelo aumento de Rin e tm e pela amplificação e prolongamento dos potenciais pós-sinápticos das células. Finalmente, a terceira parte estabelece o mecanismo pelo qual a INaP e Ih controlam a tm da célula. Para isso, propomos um novo conceito denominado \"condutância de inclinação dinâmica\" que leva em consideração a cinética das correntes e explica os efeitos observados das cinéticas de Ih e INaP sobre tm. Com base nos resultados, prevemos que uma Ih com cinética rápida atenua e encurta os potenciais pós-sinápticos excitatórios muito mais que uma Ih com cinética lenta.