Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Novaes, Marcel |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-19092007-110355/
|
Resumo: |
O objetivo desta Tese foi a aplicação da teoria dos estados coerentes para sistemas quânticos não-triviais. A partir da definição de estados coerentes para grupos de Lie compactos em geral, nos dedicamos a uma investigação detalhada da construção de tais estados e de suas propriedades no caso do grupo simplético unitário Sp(4), que é extremamente importante tanto em mecânica quântica quanto em mecânica clássica. Esse grupo possui uma complexidade intermediária, que permite um tratamento analítico ainda que apresente propriedades não-triviais do ponto de vista de teoria de representação de álgebras de Lie. Os estados coerentes obtidos nos permitiram uma investigação do limite clássico para sistemas com simetria Sp(4) e uma conexão com a teoria do caos em mecânica quântica. Além disso, tratamos uma proposta recente de generalização do conceito de estados coerentes para sistemas de espectro discreto não-degenerado, os estados de Gazeau-Klauder. Esses estados foram aplicados a um problema de magnetização bidimensional e também ao potencial unidimensional de mínimos duplos, onde observamos o aparecimento dos estados chamados \"Gatos de Schrödinger\", que consistem na superposição de dois estados de mínima incerteza. |