Real-space formulation of the Numerical Renormalization Group method (NRG)

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Ferrari, Ana Luiza Rodrigues Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
NRG
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-31102022-162143/
Resumo: The equilibrium transport properties of an elementary nanostructured device with sidecoupled geometry are computed and related to universal functions. The computation relies on a real-space formulation of the numerical renormalization-group (NRG) procedure. The real-space construction, dubbed eNRG, is more straightforward than the NRG discretization and allows more faithful description of the coupling between quantum dots and conduction states. The procedure is applied to an Anderson-model description of a quantum wire side-coupled to a single quantum dot. A gate potential controls the dot occupation. In the Kondo regime, the electrical conductance through this device is known to map linearly onto a universal function of the temperature scaled by the Kondo temperature. Here, the energy moments from which the Seebeck coefficient and the thermal conductance can be computed are shown to map linearly onto universal functions also. The moments and transport properties computed by the eNRG procedure are shown to agree very well with these analytical developments. Algorithms facilitating comparison with experimental results are discussed. As an illustration, one of the algorithms is applied to thermal dependence of the thermopower measured by Köhler in Lu 0.9Yb0.1Rh2Si2, and to resistivity measurements in CeRh6Ge4. 1, 2