Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Moreira, Rodrigo Crispim |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/10/10137/tde-11112014-150454/
|
Resumo: |
Os equinos são animais que, quando adultos, apresentam elevado peso corpóreo e ossos bastante resistentes para sustentar esse peso. Dessa forma, para que ocorra fratura nos ossos do cavalo é necessário um trauma de elevada energia resultando em fraturas cominutivas, que podem formar falhas ósseas impedindo o contato entre os fragmentos ósseos, o que compromete a estabilidade e resistência da osteossíntese. Devido à complexidade desse tipo de fraturas e aos implantes disponíveis apresentarem baixa resistência para o uso nessa espécie e devido a seu comportamento, o tratamento de fraturas em equinos apresenta baixos índices de sucesso. Dessa maneira, o uso de um material osteocondutor com resistência mecânica para o preenchimento dessas falhas poderia elevar a resistência da osteossíntese, levando a melhores índices de sucesso na correção dessas fraturas. O presente estudo teve como objetivo a avaliação biomecânica em laboratório de dois biomateriais substitutos ósseos no preenchimento de falha óssea. Para isso foram utilizados 30 ossos terceiro metacarpiano de equinos que foram submetidos a osteossíntese com placa LCP em sua face dorsal e criada uma falha óssea transversal completa de um centímetro na diáfise média. Dez dessas peças foram submetidas a ensaios biomecânicos não destrutivos até a carga de 1000N, onde foram avaliadas a rigidez, as deformações da peça inteira, da placa e do osso individualmente em diferentes regiões. As outras 20 dessas peças foram submetidas a ensaios destrutivos, onde foram avaliadas a carga e deformação suportada no limite elástico e no ponto de ruptura. Dessa forma, pôde-se observar que houve aumento na rigidez de 699,39N/mm para 2905,38N/mm e 4274,93N/mm devido ao preenchimento da falha com poliuretana de mamona e quitosana, respectivamente. A peça inteira teve sua deformação diminuída de 1,73mm para 0,5mm e 0,35 com carga de 1000N, devido ao preenchimento da falha com poliuretana de mamona e quitosana, respectivamente. A placa teve sua deformação diminuída de 2260,64µd para 320,25µd pelo preenchimento da falha com poliuretana de mamona e para 89,88µd com o preenchimento com quitosana durante a aplicação de 1000N. O osso próximo à falha sofreu maiores deformações tanto com poliuretana de mamona quanto com quitosana, contudo não apresentou maiores deformações em região distante da falha. A peça inteira teve aumento da carga suportada em seu limite elástico de 1008N para 8804N apenas com o preenchimento da falha com quitosana. A peça inteira teve sua deformação diminuída de 1,64mm para 1,26 no limite elástico apenas devido ao preenchimento da falha poliuretana de mamona. A peça inteira teve aumento da força suportada no momento de ruptura de 1660N para 15187N e 11012N com o preenchimento da falha com poliuretana de mamona e quitosana, respectivamente. A peça inteira teve sua deformação máxima no ponto de ruptura diminuída de 5,4mm para 2,16mm apenas com o preenchimento da falha com quitosana. |