Teoria cinética de mapas hamiltonianos

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Nascimento, Roberto Venegeroles
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-115433/
Resumo: Este trabalho consiste do estudo das propriedades de transporte de sistemas dinâmicos caóticos por meio do uso de técnicas de operadores de projeção. Tais sistemas podem exibir difusão determinística e relaxação para o equilíbrio. Mostramos que esse comportamento difusivo pode ser visto como uma propriedade espectral do operador de Perron-Frobenius associado. Em particular, a ressonância dominante de Policott-Ruelle é calculada analiticamente para uma classe geral de mapas que preservam área. Sua dependência do número de onda determina os coeficientes de transporte normais. Calculamos uma fórmula geral exata para o coeficiente de difusão, obtida sem qualquer aproximação de alta estocasticidade, e um novo efeito emergiu: a evolução angular pode induzir modos rápidos ou lentos de difusão mesmo no regime de alta estocasticidade. Os aspectos não-Gaussianos do transporte caótico são também investigados para esses sistemas. O estudo é realizado por meio de uma relação entre a curtose, o coeficiente de difusão e o coeficiente de Burnett de quarta ordem, os quais são calculados analiticamente. Uma escala de tempo característica que delimita os regimes Gaussiano e Markoviano para a função densidade foi estabelecida. À parte os modos acelerados, cujas propriedades cinéticas são anômalas, todo os resultados estão em excelente acordo com as simulações numéricas