Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Nascimento, Roberto Venegeroles |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-115433/
|
Resumo: |
Este trabalho consiste do estudo das propriedades de transporte de sistemas dinâmicos caóticos por meio do uso de técnicas de operadores de projeção. Tais sistemas podem exibir difusão determinística e relaxação para o equilíbrio. Mostramos que esse comportamento difusivo pode ser visto como uma propriedade espectral do operador de Perron-Frobenius associado. Em particular, a ressonância dominante de Policott-Ruelle é calculada analiticamente para uma classe geral de mapas que preservam área. Sua dependência do número de onda determina os coeficientes de transporte normais. Calculamos uma fórmula geral exata para o coeficiente de difusão, obtida sem qualquer aproximação de alta estocasticidade, e um novo efeito emergiu: a evolução angular pode induzir modos rápidos ou lentos de difusão mesmo no regime de alta estocasticidade. Os aspectos não-Gaussianos do transporte caótico são também investigados para esses sistemas. O estudo é realizado por meio de uma relação entre a curtose, o coeficiente de difusão e o coeficiente de Burnett de quarta ordem, os quais são calculados analiticamente. Uma escala de tempo característica que delimita os regimes Gaussiano e Markoviano para a função densidade foi estabelecida. À parte os modos acelerados, cujas propriedades cinéticas são anômalas, todo os resultados estão em excelente acordo com as simulações numéricas |