Rigorous results for the particle spectrum of lattice quantum chromodynamics moldels in the strong coupling regime

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Alvites, José Carlos Valencia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
QCD
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092016-144325/
Resumo: In this thesis, using rigorous methods, we determine the low-lying energy-momentum spectrum of a lattice Quantum Chromodynamics model (QCD) in dimension 3 + 1, imaginary time and in the strong coupling regime. We consider a QCD model with the Wilson action, three quark avors and 4 X 4 Dirac spin matrices. Under these conditions, we reanalyze que question about the existence of baryon particles in the context of the Gell-Mann and Ne´eman Eightfold Way. Completing previous works, where the octet baryons where shown to exist, here we prove the existence of the decuplet baryons detected by showing the existence of isolated dispersion curves in the energy-momentum espectrum restricted to the subspace of the physical quantum-mechanical Hilbert H of the model, associated with states with an odd number of fermions. Besides, we obtain some smoothness properties veried by these curves, as well as analytical properties of the spectral measure for the two-baryon correlations. Also, the octet and the decuplet baryons are shown to be the only states in the odd subspace up to near the energy threshold of the meson-baryon bound state. Using the results obtained here, we can go up in the spectrum and validate some previously obtained results on the two-baryon bound state spectrum beyond the so called ladder approximation, for the complete model.