Matrizes operacionais e formalismo coadjunto em equações diferenciais fracionais.

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Castro, William Alexandre Labecca de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-25072016-081620/
Resumo: O método das matrizes operacionais é expandido para o corpo complexo a ordens arbitrárias pela abordagem de Riemann-Liouville e Caputo com ênfase nas séries de Fourier complexas. Elabora-se uma adaptação do formalismo bra-ket de Dirac à linguagem tensorial no espaço de Hilbert de funções com expansões finitas para uso específico na teoria de equações diferenciais e matrizes operacionais, denominado \\Formalismo Coadjunto\". Estende-se o tratamento aos operadores fracionais de Weyl para períodos genéricos a fim de determinar as matrizes operacionais de derivação e integração de ordem arbitrária na base complexa de Fourier. Introduz-se um novo método de resolução de equações diferenciais ordinárias lineares e fracionais não-homogêneas, denominado \\Modelagem Operacional\", que permite a obtenção de soluções de equações de alta ordem com grande precisão sem a necessidade de imposição de condições iniciais ou de contorno. O método apresentado é aperfeiçoado por meio de um novo tipo de expansão, que denominamos \"Séries Associadas de Fourier\", a qual apresenta convergência mais rápida que a série de Fourier original numa restrição de domínio, possibilitando soluções de EDOs e EDFs de alta ordem com maior precis~ao e ampliando a esfera de casos passíveis de resolução.