Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Deutsch, Caio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-04112020-152132/
|
Resumo: |
A atribuição autoral (AA) busca identificar um autor de texto a partir de um conjunto de autores conhecidos. Autores deixam rastros em seus textos e é possível identificar características sociolinguísticas baseadas no estilos de escrita refletidos no texto destes autores. A atribuição autoral está cada vez mais demonstrando importância para diversas atividades sociais, em especial para a análise forense. Os trabalhos envolvendo AA demonstram resultados modestos e motivam a exploração de diferentes técnicas para melhorar a acurácia dos modelos atuais. A partir desses pontos, o presente trabalho apresenta uma proposta de pesquisa em nível de mestrado no campo de processamento de língua natural (PLN), com ênfase em AA, com o objetivo geral de melhorar o desempenho de classificadores de atribuição autoral utilizando técnicas de caracterização autoral (CA) |