Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Pereira, Fábio Henrique |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-22072007-212201/
|
Resumo: |
Este trabalho propõe uma nova abordagem, baseada em wavelets, para o método Multigrid Algébrico (WAMG). Nesta nova abordagem, a Transformada Discreta Wavelet é aplicada na matriz de coeficientes do sistema linear gerando uma aproximação dessa matriz em cada nível do processo de multiresolução. As vantagens da nova abordagem, que incluem maior facilidade de paralelização e menor tempo de montagem, são apresentadas com detalhes e uma análise quantitativa de convergência do método WAMG é realizada a partir da sua aplicação em problemas testes. O WAMG também é testado como pré- condicionador para métodos iterativos no subespaço de Krylov na análise magnetostática e magnetodinâmica (regime permanente senoidal) pelo Método dos Elementos Finitos, e em matrizes esparsas extraidas das coleções Matrix Market e da Universidade da Flórida. São apresentados resultados numéricos comparando o WAMG com o Multigrid Algébrico tradicional e com os pré-condicionadores baseados em decomposições incompletas de Cholesky e LU. |