Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Brunstein, Adriana |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43132/tde-27022014-133229/
|
Resumo: |
Estudamos o comportamento crítico e transições de fase em modelos estocásticos irreversíveis, através de simulações numéricas, análise de campo médio e séries perturbativas. Na primeira parte do trabalho, analisamos o comportamento crítico de autômatos celulares irreversíveis, cujas regras dinâmicas são invariantes sob as operações de simetria do grupo C3v. Estudamos as transições de fase dinâmicas que ocorrem nos modelos e obtemos, através de simulações de Monte Carlo, expoentes críticos estáticos e dinâmicos. Nossos resultados indicam que os modelos pertencem a mesma classe de universalidade do modelo de Potts de três estados. Essa conjectura também foi desenvolvida considerando expansões análogas àquelas utilizadas na teoria de Landau de transições de fase. Na segunda parte do trabalho utilizamos o formalismo de operadores como uma forma ele abordar problemas de sistemas ele não-equilíbrio. Aplicamos o formalismo para construir séries perturbativas para modelos irreversíveis ele dois estados. |