Comportamento Crítico e Transições de Fases Dinâmicas em Autômatos Celulares Probabilísticos

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Brunstein, Adriana
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43132/tde-27022014-133229/
Resumo: Estudamos o comportamento crítico e transições de fase em modelos estocásticos irreversíveis, através de simulações numéricas, análise de campo médio e séries perturbativas. Na primeira parte do trabalho, analisamos o comportamento crítico de autômatos celulares irreversíveis, cujas regras dinâmicas são invariantes sob as operações de simetria do grupo C3v. Estudamos as transições de fase dinâmicas que ocorrem nos modelos e obtemos, através de simulações de Monte Carlo, expoentes críticos estáticos e dinâmicos. Nossos resultados indicam que os modelos pertencem a mesma classe de universalidade do modelo de Potts de três estados. Essa conjectura também foi desenvolvida considerando expansões análogas àquelas utilizadas na teoria de Landau de transições de fase. Na segunda parte do trabalho utilizamos o formalismo de operadores como uma forma ele abordar problemas de sistemas ele não-equilíbrio. Aplicamos o formalismo para construir séries perturbativas para modelos irreversíveis ele dois estados.