Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Marcelino, Jadson Luan dos Santos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27092021-102428/
|
Resumo: |
O modelo probabilístico Birnbaum-Saunders vem recebendo atenção considerável nos últimos anos. Neste trabalho nós consideramos a distribuição Birnbaum-Saunders reparametrizada com zeros ajustados (ZARBS) (SANTOS-NETO et al., 2012). Esta distribuição admite a ocorrência de zeros com probabilidade positiva, considerando um modelo de mistura discreta-contínua que é construído usando uma massa de probabilidade no zero e uma componente contínua. A ZARBS generaliza pelo menos sete modelos de regressão Birnbaum-Saunders reparametrizados. Neste contexto a principal contribuição desta dissertação é estudar a ZARBS sob enfoque Bayesiano utilizando o pacote BAMLSS desenvolvido no software R, bem como derivar diagnósticos de influência para o modelo. Os métodos de diagnóstico têm sido ferramentas importantes na análise de regressão para detectar anomalias, tais como quebras das pressuposições na parte estocástica do modelo, presença de outliers e observações influentes. Nós avaliamos a influência local nas estimativas dos parâmetros considerando um esquema de perturbação. Para verificar as pontencialidades da metodologia proposta consideramos uma aplicação de um conjunto de dados reais. |