Análise Bayesiana para o modelo de Regressão Birnbaum-Saunders com zeros ajustados

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Marcelino, Jadson Luan dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27092021-102428/
Resumo: O modelo probabilístico Birnbaum-Saunders vem recebendo atenção considerável nos últimos anos. Neste trabalho nós consideramos a distribuição Birnbaum-Saunders reparametrizada com zeros ajustados (ZARBS) (SANTOS-NETO et al., 2012). Esta distribuição admite a ocorrência de zeros com probabilidade positiva, considerando um modelo de mistura discreta-contínua que é construído usando uma massa de probabilidade no zero e uma componente contínua. A ZARBS generaliza pelo menos sete modelos de regressão Birnbaum-Saunders reparametrizados. Neste contexto a principal contribuição desta dissertação é estudar a ZARBS sob enfoque Bayesiano utilizando o pacote BAMLSS desenvolvido no software R, bem como derivar diagnósticos de influência para o modelo. Os métodos de diagnóstico têm sido ferramentas importantes na análise de regressão para detectar anomalias, tais como quebras das pressuposições na parte estocástica do modelo, presença de outliers e observações influentes. Nós avaliamos a influência local nas estimativas dos parâmetros considerando um esquema de perturbação. Para verificar as pontencialidades da metodologia proposta consideramos uma aplicação de um conjunto de dados reais.