Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Silva, Adriano dos Santos Rodrigues da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-28012022-074813/
|
Resumo: |
Com o surgimento das redes sociais, os usuários passaram de consumidores a produtores de conteúdo, sendo que qualquer usuário tem a liberdade de emitir sua opinião. Devido à grande quantidade de conteúdo que os usuários publicam nas redes sociais, torna-se impossível que o monitoramento seja feito por agente humano, portanto é necessário encontrar uma forma para que essa supervisão seja de forma automática. Entretanto, esse problema é pouco explorado para o português, sendo que a maioria das pesquisas são dedicadas ao idioma inglês. Além disso, os modelos distribucionais podem ser utilizados em diversas tarefas, inclusive na tarefa de identicação de discurso de ódio em tweets. Nos experimentos realizados nesta pesquisa, esses modelos obtiveram desempenho superior em relação aos métodos tradicionais como N-Gram combinada com SVM |