Modeling high-dimensional time series from large scale brain networks

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Nascimento, Diego Carvalho do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23072020-155937/
Resumo: Neuroscientists have an urge to understand the effective brain connectivity, through the direction/ correlation of the brain areas, using biosignals, although this task demands to consider the spatiotemporal dependence and some computational constraints. Naturally, the use of large Vector Autoregression (VARs) would be appropriated if did not present a high-dimensionality curse, where the number of parameters is vastly representative. Additionally, shrinkage either in the data or parameter spaces is not trivial towards maintaining its interpretation. Therefore, some modifications were discussed, towards the graph-based model and entropy analysis, adopting the Bayesian approach, addressed by the estimate of the human brain connectivity using electroencephalogram (EEG) signals. As a motivation, we used a study case of neurorehabilitation, regarding the manipulation of human verticality, we are using high-definition transcranial direct current stimulation (HD-tDCS) as a non-invasive modulation