Detecção e Análise de Contornos em Imagens 2D.

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Bianchi, Andrea Gomes Campos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-23092008-110948/
Resumo: Neste trabalho apresentamos o desenvolvimento e a implementação de diversas técnicas de segmentação de imagens em termos de detecção de bordas, com um destaque especial para a segmentação não-linear. Os métodos considerados foram: o Gradiente, o Laplaciano da Gaussiana, a Regularização linear, e a segmentação não-linear usando o algoritmo Graduated Non Convexity, baseado na minimização de um funcional de energia associado à imagem. O tratamento matemático do funcional foi realizada segundo o paradigma do cálculo variacional. A sua principal vantagem é evidenciada durante o tratamento de bordas e descontinuidades, pois como a segmentação atua de forma não uniforme na imagem, apenas as regiões mais uniformes são suavizadas, preservando as descontinuidades, o que possibilita a conservação mais precisa dos contornos. Nos capítulos destinados a introdução das técnicas computacionais, apresentamos alguns exemplos das segmentações obtidas, possibilitando uma avaliação comparativa e qualitativa dos resultados. Aplicações em micrografias de cristais de KBr e de minerais serviram como um ensaio para a investigação da validação da segmentação através do algoritmo graduated Non Convexity.