Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Cirqueira, Marília de Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/60/60136/tde-19122019-082308/
|
Resumo: |
A doença de Chagas é uma antropozoonose causada pelo parasita Trypanosoma cruzi e que afeta aproximadamente 5 milhões de pessoas somente na América Latina, causando, no mundo todo, cerca de 10 mil mortes por ano. A doença de Chagas crônica tem grande impacto social e econômico devido a morbidade relacionada a mesma. O benznidazol é atualmente o único medicamento disponível no Brasil para o tratamento da doença de Chagas. Usado há mais de 40 anos, é caracterizado por baixa efetividade na fase crônica da doença, alta toxicidade e casos de resistência já foram relatados. Estudos demonstraram que os compostos nitroaromáticos, como o benznidazol, são pró-fármacos ativados pela redução do grupo nitro, gerando metabólitos citotóxicos, uma reação que é catalisada pela enzima nitrorredutase do tipo I (TcNTR), ausente no hospedeiro humano. Apesar de inúmeros esforços da comunidade científica, a estrutura tridimensional da TcNTR, assim como as bases moleculares e químicas de ativação seletiva dos pró-fármacos são ainda desconhecidas. Nesse contexto, esse trabalho teve objetivo iniciar os estudos de caracterização da enzima TcNTR, através do uso de uma gama de técnicas biofísicas e bioquímicas. Duas diferentes construções, TcNTR72 e TcNTR78, foram expressas, purificadas e foram avaliadas com relação a estabilidade química e térmica por meio de técnicas de fluorimetria de varredura diferencial (DSF) explorando o grupo prostético endógeno mononucleotídeo de flavina (FMN) como a sonda fluorescente (ThermoFMN), e por espalhamento dinâmico de Luz (DLS). Nossos estudos mostraram que a construção TcNTR72 é mais estável e a presença do detergente triton X-100 é fundamental para a manutenção da integridade estrutural da proteína. Técnicas de calorimetria de varredura diferencial (DSC) e de tensiometria foram cruciais para demonstrar pela primeira vez a interação da TcNTR com membranas modelo que mimetizam a membrana interna mitocondrial. Estudos de modelagem molecular baseado em homologia e por métodos ab initio sugerem que a enzima TcNTR se enovela de forma similar às NTRs de bactéria. Domínios estruturais preditos como essenciais para a dimerização assim como o sítio do FMN localizado na interface dimérica foram identificados como conservados. A maior diferença entre a enzima TcNTR e as proteínas homólogas em bactérias aparece pela inserção de um fragmento de 23 resíduos na TcNTR, predito enovelar na forma de hélice-?. Com base em nossos resultados e nas diferenças em termos de localização celular e função entre as enzimas TcNTR e de bactéria, nossos estudos sugerem que a região pode ser importante para a interação da TcNTR com a membrana interna na mitocôndria do parasita. A alta identidade sequencial compartilhada entre as enzimas de tripanossomatídeos sugerem que nossos achados poderão ser extrapolados para o estudo das NTRs de outros parasitas como Leishmania spp e Trypanossoma brucei |