O teorema de Green-Tao: progressões aritméticas de tamanho arbitrariamente grande formadas por primos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Cunha, Matheus Gonçalves Cassiano da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26082019-210327/
Resumo: Encontrar subestruturas aditivas que revelam um certo grau de organização em certos conjuntos contidos nos números naturais é o foco do estudo da combinatória aditiva. Desta área, resultados como os famosos Teorema de Van der Waerden e o Teorema de Szemerédi se destacam, revelando através de métodos combinatoriais que certas propriedades referentes ao tamanho de subconjuntos de inteiros implicam a existência de progressões aritméticas de tamanho arbitrariamente grande. Em meados de 1970, Furstenberg causou certa comoção no meio matemático ao publicar provas para ambos os teoremas usando métodos e ferramentas da teoria ergódica. Apesar de tal abordagem ter apresentado uma nova e profunda ligação entre as áreas, houve certa crítica pelo fato de não gerar resultados originais e por suas limitações (por exemplo, seus resultados costumam ser de caráter assintótico, sem lidar com limitantes e cotas, amplamente conhecidos pelos métodos combinatórios). Tais críticas foram silenciadas quando Ben Green e Terence Tao, usando tais métodos de teoria ergódica, demonstraram a incrível e bela afirmação de que os primos possuem progressões aritméticas de tamanho arbitrariamente grande, dando uma resposta definitiva para um enunciado conjecturado há muito tempo. Certamente, este foi um grande passo na matemática do século XXI. Deste então, novas abordagens foram amplamente estudadas e analisadas, de modo a aumentar ainda mais nossa compreensão sobre estes impressionantes conceitos.