Resultados matemáticos sobre o método de espalhamento inverso.

Detalhes bibliográficos
Ano de defesa: 1984
Autor(a) principal: Castro, Helena Maria Avila de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43132/tde-28022014-101333/
Resumo: Neste trabalho são apresentados alguns resultados matemáticos relevantes para a aplicação do método de espalhamento inverso à resolução de uma classe de equações de evolução não-lineares. É demonstrada a propriedade isoespectral para certas famílias de operadores lineares não auto-adjuntos. Esta propriedade tem um papel central na aplicação do método acima a equações de evolução não-lineares de interesse físico, tais como a equação de sine-Gordon e a equação de Schrödinger não-linear. É feito também, uma teoria de espalhamento inverso rigorosa para sistemas do tipo Zakharov-Shabat, o que inclui uma análise qualitativa do espectro de operadores deste tipo.