Utilização de redes neurais auto-organizativas para identificação de regimes de escoamento bifásico horizontal ar-água

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Crivelaro, Kelen Cristina Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18135/tde-16022016-134131/
Resumo: Um dos principais problemas relacionados ao transporte e manipulação de fluidos multifásicos refere-se a existência de regimes de escoamento e sua forte influência sobre importantes parâmetros de operação. Um bom exemplo disto ocorre em reatores químicos gás-líquido no qual máximos coeficientes de reação podem ser alcançados mantendo-se um escoamento a bolhas disperso, maximizando a área interfacial total. Assim, a habilidade de identificar automaticamente regimes de escoamento é de importância crucial, especialmente para operação adequada de sistemas multifásicos. Este trabalho se constituirá no desenvolvimento e implementação de uma rede neural auto-organizativa especializada ao problema de identificação de regimes de escoamento bifásico ar-água em tubo horizontal. Os regimes reconhecidos em tubo horizontal são seis: estratificado liso, estratificado ondulado, estratificado rugoso, intermitente, bolhas e anular. Para tanto, pretende-se tomar como ponto de partida as medidas capacitivas, variação de pressão da tubulação e medida de pressão \"flutuante\" como padrões associativos a serem armazenados na rede neural. Posteriormente, a fase de treinamento da rede neural consistirá em identificar os coeficientes sinápticos apropriados, a partir de um conjunto representativo de ensaios. Nesse trabalho optou-se por uma arquitetura com 10 neurônios na camada de entrada, portanto uma quantidade maior do que o número de regimes que se deseja identificar. O objetivo é ver se a rede neural consegue encontrar de forma autônoma os seis regimes já conhecidos, mesmo tendo 10 neurônios na grade. Isso demonstra a habilidade da rede neural auto-organizativa em identificar regimes de escoamento mesmo em situações onde não há conhecimento prévio dos mesmos. Serão feitas simulações para verificar o desempenho da rede neural a partir de dados experimentais coletados no oleoduto piloto do Núcleo de Engenharia Térmica e Fluidos da Escola de Engenharia de São Carlos.