Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Alvarez Toro, Luz Adriana |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3137/tde-16112012-161758/
|
Resumo: |
O propósito desta Tese é desenvolver controladores preditivos (MPC) com garantia de estabilidade e que são parte de uma estrutura onde a otimização em tempo real (RTO) produz targets otimizantes para o controlador preditivo. As aproximações de duas e três camadas foram consideradas. Três diferentes estratégias são apresentadas: A primeira estratégia é desenvolvida para sistemas com pólos integradores; esta consiste em um algoritmo MPC de horizonte infinito em duas versões estendidas. Este controlador é formulado para implementação em uma estrutura de duas camadas. Os resultados de simulação em um sistema linear com modos estáveis e integradores mostram a capacidade do controlador MPC para seguir targets nas entradas vindos da camada RTO mesmo quando há targets para sistemas integradores. Como segunda estratégia, foi desenvolvido um algoritmo que garante estabilidade nominal do controlador MPC quando este interage com a camada intermediária da estrutura em três camadas. Além da versão nominal, é desenvolvida uma extensão deste controlador para sistemas com incerteza, o controlador resultante tem estabilidade robusta. Esta aproximação é testada com um sistema linear e um sistema não linear. Para o sistema não-linear, que é um processo industrial, é simulada a estrutura completa incluindo a RTO com o algoritmo robusto. Os resultados mostram que a estrutura é capaz de seguir mudanças nos targets quando os distúrbios afetam o processo. Finalmente, a última estratégia proposta nesta Tese consiste na inclusão de uma função convexa no controlador MPC para seguir os targets. O gradiente desta função convexa é considerada num termo quadrático na função objetivo do controlador MPC. Este controlador é simulado com um sistema linear e um sistema não linear. Com o objetivo de desenvolver uma versão robusta, o MPC com gradiente foi estendido ao caso de sistemas com incertezas. Para todas as estratégias apresentadas em esta Tese, foram formulados teoremas que garantem a viabilidade recursiva e a convergência do sistema em malha fechada. |