Aspectos geométricos dos espaços Co(K,X)

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Cortes, Vinícius Morelli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-200608/
Resumo: Este trabalho tem dois objetivos principais. Primeiramente, estudamos as cópias complementadas de co(T) em espaços de Banach, onde T é um cardinal infinito. Estendemos ao caso não-enumerável um resultado clássico obtido por T. Schlumprecht que caracteriza as cópias complementadas de co em um espaço de Banach X. Usamos esta nova caracterização para estender resultados de G. Emmanuele, F. Bombal, D. Leung e F. Räbiger envolvendo as cópias complementadas de co nos espaços de Banach clássicos `p(I,X), onde p T[1, &#8734 ] e I é um conjunto não-vazio. Nós também provamos um novo resultado sobre as cópias complementadas de co(T) nos espaços Co(K,X), onde K é um espaço de Hausdor localmente compacto. Em seguida, estudamos uma extensão vetorial do clássico Teorema de Banach-Stone obtida por K. Jarosz. Estudando várias constantes introduzidas por R. James, J. Schäer, M. Baronti, E. Casini e P. Pappini, nós provamos uma nova relação entre os módulos de convexidade dos espaços Xe X*, que possui interesse independente. Esta relação é usada para provar uma nova reneralização vetorial do Teorema de Banach-Stone que simultaneamente estende o Teorema de Jarosz e também mostra que este último resultado é, de fato, uma consequência de um teorema obtido recentemente por F. Cidral, E. Galego e M. RincónVillamizar.