Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Almeida, Felipe Augusto de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100132/tde-14042022-203642/
|
Resumo: |
A análise de séries temporais tem desempenhado papel importante em diversas áreas, como meteorologia, economia, medicina, engenharia de produção, entre outras. Essas áreas possuem em comum, além de sua importância crítica no mundo atual, uma complexidade inerente que torna necessária a utilização de ferramentas cada vez mais robustas. Uma área promissora atualmente para a análise e predição das séries temporais é o aprendizado de máquina, sendo que métodos de aprendizado baseados em redes complexas têm sido recentemente propostos. Neste trabalho, um método baseado em redes complexas para detecção de tendências em séries temporais foi avaliado e estendido. Como referência, essa abordagem foi comparada com o algoritmo Random forests, um dos mais conhecidos e difundidos métodos tradicionais de aprendizado de máquina. Nos experimentos realizados, as Random forests apresentaram desempenho superior ao das redes complexas, tanto em acurácia como em custo computacional. Não obstante, a abordagem baseada em redes complexas ainda é relativamente recente e tem potencial para desenvolvimentos futuros |