Códigos de identificação de densidade mínima na grade hexagonal com número finito de linhas

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Sobral, Gabriel Augusto Gonçalves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-18092024-200458/
Resumo: Num grafo G, um conjunto de vértices C ⊆ V (G) é um código de identificação se, para cada vértice de G, a vizinhança fechada N[v] de v intersecta C, e para quaisquer vértices distintos u e v em G, temos que N[u]∩C ≠ N[v] ∩ C. Nesta tese, investigamos códigos de identificação da grade hexagonal (infinita) com k linhas, denotada por Hk. Estamos interessados em encontrar para cada k um código de identificação de Hk com a menor densidade possível, denotada por d*(Hk). Em muitas grades infinitas, é usado o método da descarga para provar limites inferiores para a densidade mínima de códigos de identificação. Não encontramos na literatura uma formalização satisfatória a respeito da aplicação desse método em grafos infinitos. Apresentamos aqui essa formalização, e mostramos que se um grafo não satisfaz certas propriedades, a aplicação do método da descarga pode levar a resultados errôneos. Usamos este método para provar que d*(Hk) ≥ 2/5 para todo k, e que d*(H2) = 9/20. Também provamos que existe um único código de identificação periódico na grade H2 com densidade 9/20. É fácil provar que d*(H1) = 1/2. Para as grades hexagonais de 3 a 5 linhas, usamos o conceito de grafo de configurações e implementamos um programa baseado neste conceito para mostrar que d*(H3) = 6/13 ≈ 0, 461538, d*(H4) = 7/16 = 0, 4375 e d*(H5) = 11/25 = 0, 44. Para as grades hexagonais com mais do que 5 linhas, mostramos que d*(H6) ≤ 47/108 ≈ 0, 43518, d*(H7p) ≤ 3/7 ≈ 0, 428571, onde p é um natural positivo, e d*(H7p+r ) ≤ 3/7 + (r/(7p + r))(d*(Hr ) - 3/7) para r ∈ [6]. Também provamos que a grade Hk é r-identificável, tem um (r, ≤ 2)-código de identificação e não tem um (r, ≤ ℓ)-código de identificação, para k ≥ 1, r ≥ 1 e ℓ ≥ 3. Estudos sobre a densidade mínima de códigos de identificação na grade hexagonal sem restrição quanto ao número de linhas (e colunas) vêm sendo realizados há mais de 20 anos, já os resultados que provamos para a grade hexagonal Hk não foram tratados antes na literatura.