Detalhes bibliográficos
Ano de defesa: |
1993 |
Autor(a) principal: |
Bena, Maria Aparecida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55131/tde-20082018-162712/
|
Resumo: |
Este trabalho é dedicado ao estudo da estabilidade de Equações Diferenciais Retardadas usando Funções Dicotômicas. Inicialmente, alguns conceitos sobre Função Dicotômica e os teoremas para estabilidade e estabilidade assintótica são estabelecidas. Várias aplicações deste método também são feitas. Chamamos a atenção para a equação x\'(t) = -λx(t) + λf(x(t - 1)) que tem sido amplamente usada em muitos campos. A força do método pode ser apreciada pelo aperfeiçoamento de muitos resultados e pela simplicidade dos \"funcionais\" empregados. Nesse sentido, um bom exemplo é dado pela equação x\'(t) = -b(t)x(t - r). Apesar de eliminarmos várias hipóteses restritivas no estudo da referida equação, conseguimos, ainda assim, ampliar a região de estabilidade em termos dos parâmetros. Alguns resultados sobre soluções que tendem a zero de maneira oscilatória e sobre equações com retardamento infinito são obtidos. |