Exportação concluída — 

On proper extensions of the conformal group

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Mello, Ulisses Lakatos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-13092022-115126/
Resumo: It is proven in this essay that any group of orientation preserving diffeomorphisms acting on the 2-sphere and properly extending the conformal group of Möbius transformations must be at least 4-transitive or, more precisely, arc 4-transitive. This means that any two ordered lists of four distinct points can be mapped one onto the other via a transformation in the group, isotopic to the identity. In addition, it is shown that any such group must always contain an element of positive topological entropy, for which a description as isotopic to a relative pseudo-Anosov homeomorphism of the 4-punctured sphere is provided. Furthermore, an elementary characterisation of the Möbius transformations within the full group of sphere diffeomorphisms is given in terms of transitivity.