Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Susemihl, Alex Kunze |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-18102010-092744/
|
Resumo: |
Procuramos neste trabalho investigar um modelo de uma sociedade em que agentes aprendem de seu vizinhos sociais. Buscando inspiração no paradigma de redes neurais, construímos uma analogia entre o modelo e o julgamento moral. Usando dados de questionários on-line obtidos alhures, apresentamos uma análise estatística de dados de sujeitos humanos. A partir destes dados estudamos o modelo, encontrando uma transição de fase entre um estado ordenado e um desordenado, dependente de um parâmetro análogo ao inverso da temperatura beta que denominamos peer pressure e de um parâmetro de controle delta associado ao comportamento dos agentes. Ao compararmos histogramas obtidos do modelo com histogramas dos dados de questionários observamos uma semelhança surpreendente entre os dois. Para determinar o diagrama de fases do modelo, usamos métodos de Monte Carlo e uma aproximação de campo médio usando métodos de máxima entropia. Estudamos também a suscetibilidade do sistema a perturbações no ambiente de discussão e encontramos um decaimento exponencial da distância entre o estado perturbado e o de equilíbrio, com um mínimo no tempo característico de adaptação para um certo valor de delta. |