Aplicações de mecânica estatística à psicologia moral

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Susemihl, Alex Kunze
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-18102010-092744/
Resumo: Procuramos neste trabalho investigar um modelo de uma sociedade em que agentes aprendem de seu vizinhos sociais. Buscando inspiração no paradigma de redes neurais, construímos uma analogia entre o modelo e o julgamento moral. Usando dados de questionários on-line obtidos alhures, apresentamos uma análise estatística de dados de sujeitos humanos. A partir destes dados estudamos o modelo, encontrando uma transição de fase entre um estado ordenado e um desordenado, dependente de um parâmetro análogo ao inverso da temperatura beta que denominamos peer pressure e de um parâmetro de controle delta associado ao comportamento dos agentes. Ao compararmos histogramas obtidos do modelo com histogramas dos dados de questionários observamos uma semelhança surpreendente entre os dois. Para determinar o diagrama de fases do modelo, usamos métodos de Monte Carlo e uma aproximação de campo médio usando métodos de máxima entropia. Estudamos também a suscetibilidade do sistema a perturbações no ambiente de discussão e encontramos um decaimento exponencial da distância entre o estado perturbado e o de equilíbrio, com um mínimo no tempo característico de adaptação para um certo valor de delta.