Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Bêdo, Marcos Vinícius Naves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112013-160506/
|
Resumo: |
Sistemas Gerenciadores de Bases de Dados Relacionais (SGBDR) são capazes de lidar com um alto volume de dados. As consultas nestes sistemas são realizados a partir da relação de ordem total, domínio sob o qual estão definidos dados simples como números ou strings, por exemplo. No caso de dados complexos, como imagens médicas, áudio ou séries-temporais financeiras que não obedecem as propriedade da relação acima citada e necessária uma abordagem que seja capaz de realizar a recuperação por conteúdo destes dados em tempo hábil e com semântica adequada. Nesse sentido, a literatura nos apresenta, como paradigma consolidado, as consultas por similaridade. Esse paradigma e a base para o funcionamento de muitos aplicativos de auxílio a tomada de decisão pelo especialista como Recuperação de Imagens Médicas por Conteúdo (CBMIR) e Recuperação de Áudio por Conteúdo (CBAR) e inclui diversas sub-áreas de pesquisa tais como extratores de características, funções de distância e métodos de acesso métrico. O desenvolvimento de novos métodos extratores de características e novas funções de distância são de fundamental importância para a diminuição do gap semântico entre os aplicativos e usuários, enquanto os métodos de acesso métricos são os reponsáveis diretos pela rápida resposta dos sistemas. Integrar todas essas funcionalidades em um framework de suporte a consultas por similaridade dentro de um SGBDR permanece um grande desafio. Esse trabalho objetiva estender uma proposta inicial dos recursos disponíveis no SIREN, inserindo novos extratores de características e funções de distância para imagens médicas e séries-temporais financeiras transformando-o em um framework, de forma que seus componentes possam ser utilizados via comandos Structured Query Language (SQL). Os resultados poderão ser diretamente utilizados por aplicativos de auxílio a tomada de decisão pelo especialista |