Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Gomez Morales, Sergio Wilson |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3136/tde-13062013-164920/
|
Resumo: |
O ambiente produtivo denominado job shop representa empresas manufatureiras com características como: alta variedade de produtos, volume baixo de produção e uma fábrica dividida em áreas funcionais. O problema abordado neste trabalho trata da determinação do programa de produção (scheduling) de cada lote de produtos no ambiente job shop, com a premissa de que cada produto a ser elaborado surge através de um pedido realizado pelo cliente com especificações e particularidades próprias. O objetivo do trabalho é apresentar e examinar de forma detalhada as formulações matemáticas do tipo linear inteira mista (PLIM), encontradas na literatura para o ambiente que consideram a função objetivo do makespan. Além disso, se estabelece uma nova formulação matemática que auxilia a simulação do ambiente. Todas as formulações foram comparadas através de suas dimensões e testes computacionais. Adicionalmente são apresentadas três diferentes estratégias de resolução que permitem a exploração de soluções obtidas através de diferentes metodologias. A primeira estratégia estabelece para cada instância uma solução inicial que promove uma redução do número de combinações a serem avaliadas pelo software, a segunda estratégia combina duas formulações tornando uma formulação unificada, e a terceira estratégia, estabelece um processo que utiliza duas formulações de forma consecutiva compondo um procedimento sistemático. Experimentos computacionais indicam que a formulação com melhor desempenho para o problema de job shop é a formulação de Manne (1960) por obter o melhor limitante superior (upper bound). A formulação proposta apresenta o melhor limitante inferior (lower bound). Todas as formulações melhoram seus resultados através do uso das estratégias propostas. |