Seleção de grupos a partir de hierarquias: uma modelagem baseada em grafos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Anjos, Francisco de Assis Rodrigues dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25102018-175959/
Resumo: A análise de agrupamento de dados é uma tarefa fundamental em mineração de dados e aprendizagem de máquina. Ela tem por objetivo encontrar um conjunto finito de categorias que evidencie as relações entre os objetos (registros, instâncias, observações, exemplos) de um conjunto de dados de interesse. Os algoritmos de agrupamento podem ser divididos em particionais e hierárquicos. Uma das vantagens dos algoritmos hierárquicos é conseguir representar agrupamentos em diferentes níveis de granularidade e ainda serem capazes de produzir partições planas como aquelas produzidas pelos algoritmos particionais, mas para isso é necessário que seja realizado um corte (por exemplo horizontal) sobre o dendrograma ou hierarquia dos grupos. A escolha de como realizar esse corte é um problema clássico que vem sendo investigado há décadas. Mais recentemente, este problema tem ganho especial importância no contexto de algoritmos hierárquicos baseados em densidade, pois somente estratégias mais sofisticadas de corte, em particular cortes não-horizontais denominados cortes locais (ao invés de globais) conseguem selecionar grupos de densidades diferentes para compor a solução final. Entre as principais vantagens dos algoritmos baseados em densidade está sua robustez à interferência de dados anômalos, que são detectados e deixados de fora da partição final, rotulados como ruído, além da capacidade de detectar clusters de formas arbitrárias. O objetivo deste trabalho foi adaptar uma variante da medida da Modularidade, utilizada amplamente na área de detecção de comunidades em redes complexas, para que esta possa ser aplicada ao problema de corte local de hierarquias de agrupamento. Os resultados obtidos mostraram que essa adaptação da modularidade pode ser uma alternativa competitiva para a medida de estabilidade utilizada originalmente pelo algoritmo estado-da-arte em agrupamento de dados baseado em densidade, HDBSCAN*.