Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Souza, Anacleto Silva de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-20052019-114645/
|
Resumo: |
A doença de Chagas é uma doença tropical negligenciada e um grande problema de saúde mundial, principalmente na América Latina. O agente etiológico da doença é o protozoário Trypanosoma cruzi. Segundo a Organização Mundial da Saúde (OMS), cerca de 8 milhões de pessoas estão infectadas com o parasita e 25 milhões vivem áreas de risco de contaminação. A farmacoterapia consiste nos fármacos nifurtimox e benzonidazol. Ambos apresentam sérios efeitos adversos como dermatite, neurotoxicidade e hepatite, e baixa eficácia na fase crônica da doença. Nesse contexto, há urgência no desenvolvimento de novos fármacos seguros e eficazes para o tratamento da doença. Dentre os alvos moleculares validados para o desenvolvimento de novos fármacos para a doença de Chagas, destaca-se a cruzaína, principal cisteíno-protease do parasita. A cruzaína é expressa em todo o ciclo de vida do parasita e está envolvida em diversos processos biológicos do protozoário, como nutrição, reprodução, invasão, reconhecimento molecular e evasão. A alta atividade que muitos inibidores apresentam contra a enzima, não se traduz, para grande parte destes inibidores, em alta atividade e seletividade em ensaios fenotípicos. Isso ocorre devido a fatores como propriedades farmacocinéticas inadequadas. Nesse contexto, essa tese de doutorado aborda dois temas: o primeiro consiste na construção de modelos de redes neurais artificiais (r² = 0,81 e r²pred = 0,81) e KPLS, na sigla em inglês para Kernel-Based Partial Least Squares (N = 3, r² = 0,81 e r²pred =0,85). Esses modelos foram utilizados para investigar propriedades estruturais, fragmentos privigeligiados e propriedades físico-químicas associadas à atividade em ensaios fenotípicos in vitro. Em seguida, foram desenvolvidos modelos de floresta randômica (número de árvores = 100, r² = 0,97 e r²pred = 0,77) e KPLS radial (N= 4, r² = 0,88 e r²pred = 0,88) para avaliar as propriedades moleculares e estruturais relacionados à seletividade. Posteriormente, essas informações foram combinadas para a realização de triagens virtuais em larga escala. Por fim, um conjunto de estruturas selecionadas foram docadas no sítio ativo cruzaína e submetidas a submetidas à predição de permeabilidade através de membrana e absorção, distribuição, metabolismo, excreção e toxicidade (ADME-Tox). Esses estudos conduziram à descoberta de 260 novos compostos, os quais foram avaliados in silico quanto a atividade biológica, seletividade, e quanto aos pontos de clivagen pela enzima CYP3A4. O segundo tema consiste em simulações de dinâmica molecular do complexo K777-cruzaína em pH 5,5 e 8,0 combinadas a modelagem por redes neurais artificiais (RNAs). De acordo com as RNAs, a mudança nos estados de protonação de duas histidinas, causada por mudanças no pH pode deslocar alças, hélices-α e folhas-β. Estes deslocamentos causam uma alteração do ambiente químico no sítio de interação, alterando a afinidade do inibidor pela enzima (energia livre de ligação). Em pH 5,5, a HIS162 interage principalmente com os resíduos ASP161, GLY163 e ASN182, e a CYS25 permanece disponível para realizar um ataque nucleofílico ao inibidor. Em pH 8,0, no entanto, a HIS162 perde as interações com o ASP161 e a GLY163, e interage com a cadeia lateral da CYS25 e com a cadeia principal da SER183. Estas alterações podem bloquear o ataque nucleofílico da CYS25 ao inibidor K777. Este estudo constribuiu para o avaliar a influência do pH na alteração dos elementos de estrutura secundária da enzima e sua relação com a afinidade dos inibidores pela cruzaína. Por fim, foram desenvolvidos modelos de QSAR 2D e 3D a partir de uma série de oxadiazóis (r²pred KPLS e r²pred CoMFA de 0,81 e 0,82, respectivamente). A integração de métodos de QSAR 2D e 3D e as estratégias de docagem molecular possibilitaram mapear os subsítios do sítio ativo da cruzaína quanto a ligações de hidrogênio, ligações de halogênio e interações do tipo π-π e CH-π. Estes estudos fornecem informações quanto ao espaço químico a ser explorado e alterações estruturais relevantes para o planejamento e avaliação de novos agentes antichagásicos e inibidores da cruzaína. |