Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Pérez, Natalia Andrea Milla
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11032019-160302/
Resumo: O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência.