Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Cavalcanti, Alexsandro Bezerra |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05082009-170043/
|
Resumo: |
Neste trabalho, desenvolvemos três tópicos relacionados a modelos de regressão da família exponencial. No primeiro tópico, obtivemos a matriz de covariância assintótica de ordem $n^$, onde $n$ é o tamanho da amostra, dos estimadores de máxima verossimilhança corrigidos pelo viés de ordem $n^$ em modelos lineares generalizados, considerando o parâmetro de precisão conhecido. No segundo tópico calculamos o coeficiente de assimetria assintótico de ordem n^{-1/2} para a distribuição dos estimadores de máxima verossimilhança dos parâmetros que modelam a média e dos parâmetros de precisão e dispersão em modelos não-lineares da família exponencial, considerando o parâmetro de dispersão desconhecido, porém o mesmo para todas as observações. Finalmente, obtivemos fatores de correção tipo-Bartlett para o teste escore em modelos não-lineares da família exponencial, considerando covariáveis para modelar o parâmetro de dispersão. Avaliamos os resultados obtidos nos três tópicos desenvolvidos por meio de estudos de simulação de Monte Carlo |