Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Martins, Camila Bertini |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10122013-190238/
|
Resumo: |
O papel da metanálise de sumarizar estudos publicados de mesmo objetivo, por meio da estatística, torna-se cada dia mais fundamental em razão do avanço da ciência e do desejo de usar o menor número de seres humanos em ensaios clínicos, desnecessários, em vários casos. A síntese das informações disponíveis facilita o entendimento e possibilita conclusões robustas. O aumento de estudos clínicos, por exemplo, promove um crescimento da necessidade de metanálises, fazendo com que seja necessário o desenvolvimento de técnicas sofisticadas. Desse modo, o objetivo deste trabalho foi propor uma metodologia bayesiana para a realização de metanálises. O procedimento proposto consiste na mistura das distribuições a posteriori do parâmetro de interesse de cada estudo pertencente à metanálise; ou seja, a medida metanalítica proposta foi uma distribuição de probabilidade e não uma simples medida-resumo. A metodologia apresentada pode ser utilizada com qualquer distribuição a priori e qualquer função de verossimilhança. O cálculo da medida metanalítica pode ser utilizado, desde problemas simples até os mais sofisticados. Neste trabalho, foram apresentados exemplos envolvendo diferentes distribuições de probabilidade e dados de sobrevivência. Em casos, em que se há uma estatística suficiente disponível para o parâmetro em questão, a distribuição de probabilidade a posteriori depende dos dados apenas por meio dessa estatística e, assim, em muitos casos, há a redução de dimensão sem perda de informação. Para alguns cálculos, utilizou-se o método de simulação de Metropolis-Hastings. O software estatístico utilizado neste trabalho foi o R. |