Avaliação do desempenho de modelos preditivos no contexto de análise de sobrevivência

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Santos, Tiago Mendonça dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-03092013-111337/
Resumo: Modelos estatísticos com objetivos preditivos são frequentemente aplicados como ferramentas no processo de tomadas de decisão em diversas áreas. Uma classe importante de modelos estatísticos é composta por modelos de análise de sobrevivência. Duas quantidades são de interesse nessa classe: o tempo até o instante do evento de interesse ou o status para um determinado instante de tempo fixado. Aplicações importantes desses modelos incluem a identificação de novos marcadores para certas doenças e definição de qual terapia será mais adequada de acordo com o paciente. Os marcadores utilizados podem ser dados por biomarcadores, assim como por marcadores baseados em modelos de regressão. Um exemplo de marcador baseado em modelos de regressão é dado pelo preditor linear. Ainda que a utilização de modelos de sobrevivência com objetivos preditivos seja de suma importância, a literatura nesse assunto é muito esparsa e não há consenso na forma de se avaliar o desempenho preditivo desses. Esse trabalho pretende reunir e comparar diferentes abordagens de se avaliar o desempenho preditivo de modelos de sobrevivência. Essa avaliação é feita principalmente utilizando-se funções de perda para o tempo de sobrevivência e quantidades associadas a diferentes definições de curva ROC para o status. Para a comparação dessas diferentes metodologias foi feito um estudo de simulação e no final aplicou-se essas técnicas em um conjunto de dados de um estudo do Instituto do Câncer de São Paulo.