Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Bertani, Ricardo Mitollo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-28022020-111422/
|
Resumo: |
Sistemas de recomendação têm sido amplamente utilizados por grandes empresas do segmento de e-commerce como ferramenta de auxílio na busca de conteúdos relevantes de acordo com as preferências particulares dos usuários. Uma ampla variedade de algoritmos tem sido apresentada na literatura com o objetivo de aprimorar o processo de geração de recomendações; em particular, destacam-se aqueles baseados em filtragem colaborativa, os quais ainda falham em dados esparsos, afetando a qualidade das recomendações. Para mitigar essa lacuna, um algoritmo híbrido baseado em difusão foi proposto na literatura; no entanto, este algoritmo não diferencia os usuários de acordo com seus perfis. Nesta pesquisa, um novo algoritmo é apresentado para o aprendizado do perfil dos usuários e consequente geração de recomendações personalizadas através de difusão, combinando itens pouco conhecidos (novidade) a itens populares. Os experimentos realizados em três conjuntos de dados bem conhecidos na literatura mostram que os resultados superam aqueles obtidos pelo algoritmo original baseado em difusão, assim como os obtidos pelo algoritmo tradicional colaborativo, sob as mesmas configurações. |