Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Azevedo, Ana Cláudia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/23/23139/tde-02092013-170420/
|
Resumo: |
A invenção da Tomografia Computadorizada revolucionou o método de diagnóstico. Apesar de ser um exame de custo elevado, sua confiabilidade é de grande valia. Na década de noventa foram descritos os primeiros relatos da tomografia computadorizada Cone Beam para o uso na Odontologia. Esses aparelhos de tomografia computadorizada por feixe cônico, Cone Beam ou volumétrica são mais compactos, de menor custo e com menor tempo de exposição à radiação ao paciente, quando comparados aos aparelhos de tomografia computadorizada médica ou Fan Beam. Diante da grande utilização de implantes osseointegrados, algumas dificuldades foram despontando, visto que também paralelamente a este, os defeitos ósseos necessitavam de correção. Então os enxertos ósseos ou biomateriais de enxertia passaram a ser a alternativa que possibilitava a correção dessas perdas ósseas. Com o objetivo de estudar e avaliar qualitativamente os biomateriais de enxertia, inseridos em alvéolos dentais, em mandíbulas de suínos, por meio da tomografia computadorizada Cone Beam, utilizou-se de 20 mandíbulas dissecadas de porco, dos quais foram extraídos quatro dentes e nesses alvéolos foram introduzidos quatro biomateriais de enxertia de composições diferentes, com propriedades físico-químicas distintas, forma física, origem e de classificações diferentes. As mandíbulas de suínos foram submetidas a um exame de tomografia computadorizada volumétrica. As imagens obtidas foram avaliadas por um Software específico. Os resultados mostraram que não existiu diferença entre os cortes C (corte coronal) e S (corte sagital) e entre os cortes SS (corte parassagital) e o corte PAN (corte panorâmico), sendo que os corte C e S tiveram maior observação e os cortes SS e PAN, foram os de menor observação. Quanto ao material M-C (GenPhos HA TCP®, G 50, 0.5cc) foi o que obteve maior média de observação (com média 1, 81) enquanto que o M-B (OrthoGen®, G 75, 0.5cc) foi o mais difícil de ser observado, nos contes C (corte coronal) e S (corte sagital). Em relação a homogeneidade os materiais M-B (OrthoGen®, G 75, 0.5cc) e M-D (GenOx Inorg Esponjoso®) não apresentaram diferenças significativas, sendo portanto os materiais considerados menos homegêneos, quando se referem a densidade; observados nos cortes C (corte coronal) e S (corte sagital). Já os materiais M-C (GenPhos HA TCP®, G 50, 0.5cc) e M-A (Biogran® 300-350m, 50-45 mesh) segundo os p-valores não foram considerados estatisticamente diferentes, portanto os materiais que apresentaram as imagens mais homogêneas, igualmente aos demais materiais, foram observados nos cortes C (corte coronal) e S (corte sagital). O corte PAN (corte panorâmico) com média 1,43, foi a imagem que permitiu uma melhor observação dos biomateriais de enxertia. Todos os avaliadores afirmaram que identificaram o alvéolo ou o biomaterial de enxertia considerando a referência anatômica (lâmina dura). |