Análise hiperespectral de folhas de Brachiaria brizantha cv. Marandú submetidas a doses crescentes de nitrogênio

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Takushi, Mitsuhiko Reinaldo Hashioka
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-11072019-160520/
Resumo: O sensoriamento remoto é uma estratégia que pode ajudar no monitoramento da qualidade das pastagens. Objetivou-se com esse estudo analisar a resposta espectral das folhas de Brachiaria brizantha cv. Marandú, adubada com doses crescentes de ureia, para diferenciar e predizer teores foliares de nitrogênio (TFN). Os tratamentos foram distribuídos em blocos ao acaso (DBC), composto por quatro blocos e quatro tratamentos, totalizando 16 parcelas. Foram utilizadas doses crescentes de adubação com ureia: 0, 25, 50, 75 kg de N/ha/corte. Ao longo do experimento foram realizadas 7 coletas, sendo coletadas 8 folhas por parcela. Essas folhas foram submetidas à análise hiperespectral e posterior análise química do teor de nitrogênio. Ao analisar a resposta espectral das folhas, observou-se diferenças estatísticas entre os tratamentos na região do visível em todas as coletas, com ênfase na região de 550 nm (verde). Por meio de análise discriminante linear (LDA) realizada para cada coleta, os centróides gerados por todos os tratamentos apresentaram diferenças significativas, com exceção do LD1 nas coletas 6 e 7 que não apresentou distinção entre os tratamentos de 50 e 75 kg de N/ha/corte, e LD2 na coleta 5 que não apresentou distinção entre os tratamentos de 0 e 50 kg de N/ha/corte. As equações de regressão multivariada obtidas pelo método de quadrados mínimos parciais (PLSR), geraram valores razoáveis a bons de R2 (0,53 a 0,83) na predição dos TFN, onde os comprimentos de onda com maior peso nessas regressões estão na região do red edge (715 a 720 nm). Por fim, ao testar a performance de alguns Índices de Vegetação da literatura, as coletas 4, 6 e 7 apresentaram bons coeficientes de determinação (R2) que variaram de 0,65 a 0,73; uma característica em comum nos índices que melhor estimaram os TFN é a presença de comprimentos de ondas que fazem parte da região do red edge.