Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Ribeiro, Heitor Reis |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19062021-063556/
|
Resumo: |
The solution to Maximum-a-Posteriori Inference problems in Sum-Product Networks provides the most probable configuration of the Random Variables encoded in its structure; a key step in Probabilistic reasoning that can be used for many applications, such as image auto-completion. It has been proven that this problem is NP-Hard (even to approximate) in Sum-Product Networks. Multiple algorithms have been developed to reach either approximate or exact solutions to this problem, but the experiments have been limited. In this Dissertation, we provide descriptions, analysis, and a benchmark for experimental testing for algorithms that solve this problem. We conclude that, given limited time, a Local Search algorithm starting with a solution found by the Argmax-Product algorithm reaches, on average, better results on the tested datasets. |