Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Oikawa, Koki Fernando |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/47/47132/tde-18112019-183159/
|
Resumo: |
Bancos de dados contendo características longitudinais surgem frequentemente na área de saúde. Dados longitudinais no nível da unidade experimental (pacientes, indivíduos em geral), podem ser considerados como observações sob a forma de medidas repetidas e em uma determinada ordem temporal. Em um contexto de dados longitudinais, medidas de associação e ou de correlação das respostas (das unidades experimentais) também devem ser levadas em consideração, uma vez que certos padrões de respostas (no nível das unidades experimentais) surgem regularmente. Usualmente, dois modelos são empregados para análise de dados longitudinais: a) GEE e b) GLMM. O primeiro é utilizado quando as questões de interesse residem sobre aspectos populacionais, enquanto que o segundo, para análises mais direcionadas mais especificamente no nível das unidades experimentais. Na década de 80, esses modelos passaram a ser considerados como estratégia para a análise de dados longitudinais tendo, por um lado, a classe de modelos PA (Population-Averaged) e, por outro, a classe de modelos SS (Subject-Specific). Mais recentemente, foi descoberto que essas classes de modelos possuem certas relações matemáticas de equivalência. Nessa Tese, serão realizadas simulações de dados longitudinais por meio de um pacote do software R especialmente desenvolvido para essa finalidade, com uma quantidade de unidades experimentais relativamente elevada (N = 10.000) e 6 medidas repetidas em cada uma delas, características pouco frequentes na literatura. Além disso, modelos das classes PA e SS serão estimados a partir dos dados simulados e o grau de aproximação das estimativas dos parâmetros (interceptos e coeficientes) será averiguada |