Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Rodrigues, Natália Villa Nova |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-21122020-120638/
|
Resumo: |
A próxima geração de levantamentos astrofsicos contará com grandes quantidades de dados. Esse cenário motiva o uso de ferramentas de aprendizagem automática para classificar objetos observados como fontes pontuais de emissão. A seleção de quasares, em particular, é de fundamental importância para obter vnculos de parâmetros cosmológicos, investigar a evolução do universo e desvendar o mistério da energia escura. Neste tra- balho utilizamos algoritmos de aprendizagem automática para classificar quasares entre estrelas e galáxias. Em particular, desenvolvemos uma técnica para incluir as incertezas das medidas nesses algoritmos e mostramos, a partir de um modelo simplificado, que essa abordagem melhora a performance dos classificadores. Essas técnicas foram aplicadas aos dados de dois levantamentos fotométricos, S-PLUS e miniJPAS, que são caracteri- zados principalmente por suas configurações de filtros de bandas estreitas. As técnicas desenvolvidas aqui serão posteriormente utilizadas para construir catálogos de quasares e mapas de estruturas em grandes escalas. |