Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Marteletto, Sérgio Reinaldo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100132/tde-08032023-134543/
|
Resumo: |
Nas últimas décadas tem havido um interesse crescente em prever o comportamento futuro dos mercados financeiros. Pesquisadores investigam esse problema modelando uma representação conveniente para os dados, as chamadas séries temporais, apesar da dificuldade de estudá-las com precisão devido aos seus padrões não lineares e não estacionários. Além disso, a questão da alta dimensionalidade, presente no conjunto de dados, reduz o entendimento das relações de dependência entre as observações. O uso de novas tecnologias em finanças, como o aprendizado de máquina, busca extrair e analisar informações sobre o preço dos ativos e fluxos de negociação em um ambiente competitivo de risco-retorno. Esse trabalho propõe a análise comparativa de técnicas modernas de seleção de atributos VSURF (Variable Selection Using Random Forests) e RFE ( Recursive Feature Elimination), a fim de reduzir a dimensionalidade na base de dados. Os resultados obtidos foram consistentes e não causaram perda da capacidade preditiva do modelo. |