Identificação e validação funcional de novos alvos das PKCs em célula tronco embrionária

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Duarte, Mariana Lemos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/46/46131/tde-16012014-105728/
Resumo: Algumas das estratégias utilizadas para entender a biologia de células tronco embrionária (CTE) são baseadas na identificação de cascatas de sinalização que induzem a diferenciação e auto-renovação das CTE através da interferência seletiva de processos específicos. A família das proteínas quinase C (PKC) é conhecida por participar dos processos de auto-renovação e diferenciação celular em CTE, entretanto, o papel específico das diferentes isoenzimas das PKCs ainda precisa ser elucidado. Desta forma investigamos. o papel das PKCs atípicas (aPKCs) em CTE indiferenciadas utilizando um inibidor específico para estas serina/ treonina quinases, o peptídeo pseudossubstrato das aPKCs, e fosfoproteômica. A maioria das proteinas identificadas cuja fosforilação reduziu após o tratamento com o inibidor das aPKC, são proteínas envolvidas com o metabolismo principalmente com a via glicolítica. Além disso, a inibição das aPKCs levou a redução do consumo de glicose, secreção de lactato, acompanhada da redução da atividade da lactato desidrogenase, e aumento da fosforilação oxidativa, sendo analisada através do consumo de oxigênio após o tratamento com oligomicina e FCCP. Verificamos também que as aPKCs são capazes de fosforilar diretamente a piruvato quinase. A glicólise aeróbica parece ser fundamental para a manutenção da indiferenciação das CTE, e demonstramos que as aPKCs participam deste processo auxiliando na auto-renovação das CTE indiferenciadas. Também observamos que as aPKCs assim como a PKCβI modulam a fosforilação da α-tubulina, porém ao passo que as aPKCs interagem com a α-tubulina durante a interfase, a PKCβI interage com a mesma apenas durate a mitose. Estes resultados motivaram a segunda parte da tese, na qual o papel da fosforilação da α-tubulina pela PKCβI foi investigado. O resíduo de treonina 253, conservado em diversas espécies de vertebrados e localizado na interface de polimerização entre a α- e a β-tubulina foi identificado, como um novo sítio de fosforilação da α-tubulina pela PKCβI. Este sítio não está em um consenso linear para a PKC, entretanto é um consenso formado estruturalmente, onde aminoácidos básicos distantes na sequência linear se tornam justapostos na estrutura terciária da proteína. Estudos de simulação por dinâmica molecular demonstraram que a interação entre a α e β-tubulina aumenta após esta fosforilação, uma vez que T253 fosforilada passa a interagir com K105, um residuo conservado na β-tubulina. A fosforilação in vitro de α-tubulina aumenta a taxa de polimerização da tubulina e a inibição da PKCβI em células reduziu a taxa de repolimerização do microtubulo após o tratamento com nocodazol. Além disso, a importância da fosforilação deste sítio foi demonstrada pelo fato de que um mutante fosfomimético GFP-α-tubulina, T253E ser mais incorporado no fuso mitótico ao passo que T253A foi menos incorporado do que a proteína selvagem. Nossos dados suportam a hipótese que os consensos estruturais formados podem ser importantes sítios de reconhecimento pelas quinases e que a fosforilação de T253 da α-tubulina afeta a estabilidade do polímero. Em conclusão, utilizando métodos de fosfoproteômica e interferência seletiva de vias de sinalização, combinados a validações experimentais dos alvos identificados podemos propor a importância funcional das aPKCs e PKCβI em CTE indiferenciadas.