Métodos de estimação de parâmetros em modelos geoestatísticos com diferentes estruturas de covariâncias: uma aplicação ao teor de cálcio no solo.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Oliveira, Maria Cristina Neves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12052003-151635/
Resumo: A compreensão da dependência espacial das propriedades do solo vem sendo cada vez mais requerida por pesquisadores que objetivam melhorar a interpretação dos resultados de experimentos de campo fornecendo, assim, subsídios para novas pesquisas a custos reduzidos. Em geral, variáveis como, por exemplo, o teor de cálcio no solo, estudado neste trabalho, apresentam grande variabilidade impossibilitando, na maioria das vezes, a detecção de reais diferenças estatísticas entre os efeitos de tratamentos. A consideração de amostras georreferenciadas é uma abordagem importante na análise de dados desta natureza, uma vez que amostras mais próximas são mais similares do que as mais distantes e, assim, cada realização desta variável contém informação de sua vizinhança. Neste trabalho, métodos geoestatísticos que baseiam-se na modelagem da dependência espacial, nas pressuposições Gaussianas e nos estimadores de máxima verossimilhança são utilizados para analisar e interpretar a variabilidade do teor de cálcio no solo, resultado de um experimento realizado na Fazenda Angra localizada no Estado do Rio de Janeiro. A área experimental foi dividida em três regiões em função dos diferentes períodos de adubação realizadas. Neste estudo foram utilizados dados do teor de cálcio obtidos das camadas 0-20cm e 20-40cm do solo, de acordo com as coordenadas norte e leste. Modelos lineares mistos, apropriados para estudar dados com esta característica, e que permitem a utilização de diferentes estruturas de covariâncias e a incorporação da região e tendência linear das coordenadas foram usados. As estruturas de covariâncias utilizadas foram: a exponencial e a Matérn. Para estimar e avaliar a variabilidade dos parâmetros utilizaram-se os métodos de máxima verossimilhança, máxima verossimilhança restrita e o perfil de verossimilhança. A identificação da dependência e a predição foram realizadas por meio de variogramas e mapas de krigagem. Além disso, a seleção do modelo adequado foi feita pelo critério de informação de Akaike e o teste da razão de verossimilhanças. Observou-se, quando utilizado o método de máxima verossimilhança, o melhor modelo foi aquele com a covariável região e, com o método de máxima verossimilhança restrita, o modelo com a covariável região e tendência linear nas coordenadas (modelo 2). Com o teor de cálcio, na camada 0-20cm e considerando-se a estrutura de covariância exponencial foram obtidas as menores variâncias nugget e a maior variância espacial (sill - nugget). Com o método de máxima verossimilhança e com o modelo 2 foram observadas variâncias de predição mais precisas. Por meio do perfil de verossimilhança pode-se observar menor variabilidade dos parâmetros dos variogramas ajustados com o modelo 2. Utilizando-se vários modelos e estruturas de covariâncias, deve-se ser criterioso, pois a precisão das estimativas, depende do tamanho da amostra e da especificação do modelo para a média. Os resultados obtidos foram analisados, com a subrotina geoR desenvolvida por Ribeiro Junior & Diggle (2000), e por meio dela pode-se obter estimativas confiáveis para os parâmetros dos diferentes modelos estimados.