Classificando emoções em processos de reabilitação robótica

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Appel, Viviane Cristina Roma
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18149/tde-14112017-102247/
Resumo: Reabilitação robótica tem um papel importante em exercícios terapêuticos ao combinar robôs com jogos sérios de computador em uma atraente plataforma terapêutica. Entretanto, a tarefa de medir o grau de adesão do paciente ao tratamento não é trivial. A dificuldade de aplicar técnicas baseadas em questionários e entrevistas, particularmente em pacientes que tiveram a fala comprometida por acidente vascular encefálico (AVE), nos inspirou a investigar técnicas não verbais e não invasivas para classificar emoções. Com este propósito, uma rede neural supervisionada foi projetada para interpretar imagens térmicas infravermelhas faciais de indivíduos realizando terapia robótica de reabilitação integrada com os jogos. Uma base de dados contendo imagens de 8 voluntários foi criada e contém reações emocionais espontâneas e provocadas. No total, foram analizadas 2445 imagens térmicas faciais, em média 100 imagens por pessoa por 3 categorias de emoções (neutra, motivado e sobrecarregado). Baseado em análise de matriz de confusão, os resultados experimentais se correlacionaram muito bem com as estimativas manuais, produzindo um desempenho global de 92,6%.